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Abstract
We study the vulnerability of complex networks under intentional attack with
incomplete information, which means that one can only preferentially attack the
most important nodes among a local region of a network. The known random
failure and the intentional attack are two extreme cases of our study. Using the
generating function method, we derive the exact value of the critical removal
fraction fc of nodes for the disintegration of networks and the size of the
giant component. To validate our model and method, we perform simulations
of intentional attack with incomplete information in scale-free networks. We
show that the attack information has an important effect on the vulnerability of
scale-free networks. We also demonstrate that hiding a fraction of the nodes
information is a cost-efficient strategy for enhancing the robustness of complex
networks.

PACS numbers: 89.75.Hc, 89.75.Fb, 05.70.Jk

1. Introduction

Networks with complex topology describe a wide range of systems in nature and society.
Examples include the Internet [1], the World Wide Web [2], metabolic networks [3], electric
power grids [4] and many others. In the past few years, the discovery of small-world [5]
and scale-free properties [6] has stimulated a great deal of interest in studying the underlying
organizing principles of various complex networks [7, 8].

Because of its broad application, the vulnerability of complex networks, i.e., how random
failures or intentional attacks affect the integrity and operation of the networks, has received
growing attention, especially from the original work by Albert et al [9]. Albert et al have
introduced models for random failure and intentional attack and suggested that scale-free
networks display an exceptional robustness against random failure, but show poor performance
against intentional attack.

1751-8113/07/112665+07$30.00 © 2007 IOP Publishing Ltd Printed in the UK 2665

http://dx.doi.org/10.1088/1751-8113/40/11/005
mailto:wujunpla@163.com
http://stacks.iop.org/JPhysA/40/2665


2666 J Wu et al

For the study of attack vulnerability of complex networks, the selection procedure of
the order in which nodes are removed is an open choice. One may of course maximize the
destructive effect at any fixed number of removed nodes or edges. However, this requires the
information of the whole network structure. If we can obtain the complete information of
the network structure, we preferentially remove the most important nodes among the whole
network according to some criterion (the most common criteria are the degree of node). This
attack strategy corresponds to the intentional attack with complete information. If we have
zero information of the network structure, we can only remove nodes randomly. This attack
strategy corresponds to the random failure. The intentional attack with complete information
and random failure are just two extremes in real-world networks. The more cases are between
these two extremes, i.e. an intentional attack with incomplete information. The vulnerability
of complex networks under random failure or intentional attacks with complete information
has been well established [9–23]. However, only a few studies have focused on the attacks with
incomplete information. Dezs ′′o [24] et al investigated the effect of incomplete information
on the epidemic threshold for viruses spreading on scale-free networks and it is assumed that
the likelihood of identifying an infected node with k edges depends on the node’s degree as
kα . Gallos et al [25, 26] studied the tolerance of SF networks under systematic variation
of the attack strategies, in which the probability that a given node is destroyed, depends on
its degrees as W(k) ∼ kα . Following the method in [25], Dall’Asta et al [27] studied the
inhomogeneous percolation under systematic variation of the attack strategies. In fact, the
incomplete information considered in [24–27] is uncertain information, which means that
one can obtain the information of all nodes, but the information may be uncertain. There
is another scenario for incomplete information, on which this paper focuses, i.e. one can
obtain the information of partial nodes, whereas the information is certain. Using simulation
method, Xiao et al [28] examined the robustness of complex communication networks under
intentional attacks, in which two special cases of nodes information missing are considered,
but no analytical result is achieved.

In this paper, we study vulnerability of complex networks under intentional attacks with
incomplete information by introducing a general model for intentional attacks with a tunable
attack information parameter. Our study focuses on the exact value of the critical removal
fraction fc of nodes for the disintegration of networks and the size of the giant component
under intentional attack with incomplete information.

2. Model of intentional attacks with incomplete information

A complex network can be represented by a graph G with N nodes and M edges. Assume that
G is an undirected and simple connected graph with uncorrelated degree distribution. Let di

be the degree of a node vi .
An intentional attack with incomplete information means that we can only preferentially

remove the most important nodes among a local region of a network. It consists of two steps:

(1) Choose the effective attack region (EAR): select Nα nodes randomly, where the parameter
α is the measure of attack information.

(2) Attack Nf nodes in G: if α > f , we remove Nf nodes in decreasing order of degree
in EAR; if α � f , we first remove all nodes in EAR and then remove N(f − α) nodes
randomly besides EAR.

It is obvious that there are two extreme cases: α = 0 and α = 1, corresponding to random
failure and intentional attack with complete information, respectively.
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Let p(k) (m � k � K) be the degree distribution that a randomly chosen node in the
network has degree k, where m is the smallest degree and K is the upper cutoff. Let q(k) be
the probability distribution that a node is not removed given that it has degree k.

In the case α � f , since EAR is obtained by selecting nodes randomly, it is easy to obtain
that an intentional attack with incomplete information is identical to a random failure, and
then we obtain

q(k) = 1 − f. (1)

In the case α > f , let K̃ be the maximum degree of the remaining nodes in EAR after
nodes removal. Obviously, K̃ is a function of α and f denoted by K̃(α, f ). Using K̃, q(k)

can be written as

q(k) =
{

1 k � K̃

1 − α k > K̃.
(2)

Now we derive K̃ . Sorting all Nα nodes in EAR in decreasing order of degree, let R(k)

be the rank of a node with degree k in EAR, then we obtain

R(k) = Nα

∫ K

k

p(t) dt . (3)

Note that R(K̃) = Nf , then

R(K̃) = Nα

∫ K

K̃

p(t) dt = Nf. (4)

Solving equation (4), we can obtain K̃(α, f ). In particular, for scale-free networks with
power law degree distributions p(k) = Ck−λ (m � k � K), where C ≈ (λ − 1)mλ−1 and
K ≈ mN1/(λ−1) [12], we can obtain K̃(α, f ) in scale-free networks as follows:

K̃(α, f ) = m

(
f +

1

N

) 1
1−λ

≈ mf
1

1−λ . (5)

3. Critical removal fraction and size of giant component

Now we employ the generating function formalism [11, 29] to find exact analytic solutions
for the critical removal fraction fc and the size of giant component under intentional attack
with incomplete information.

The generating function of p(k) (m � k � K) is that

G0(x) =
K∑

k=m

p(k)xk. (6)

Another quantity that will be important to us is the distribution of the degree of the nodes
that we arrive at by choosing a random edge and following it to one of its ends. The correctly
normalized distribution r(k) of the remaining degree is then given by [30]

r(k) = (k + 1)p(k + 1)∑
k

kp(k)
= (k + 1)p(k + 1)

〈k〉 (7)

where 〈k〉 is the average degree in the network. Thus the generating function of the remaining
degree distribution is generated by the function

G1(x) =
K∑

k=m

r(k)xk−1 = G′
0(x)

〈k〉 . (8)
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Let w0(k) be the probability that a randomly chosen node has degree k and is not removed,
i.e. w0(k) = p(k)q(k). Let w1(k) be the probability that a node at the end of a randomly
chosen edge has degree k and is not removed, i.e. w1(k) = r(k)q(k). The generating function
of w0(k) and w1(k) is respectively

F0(x) =
∞∑

k=0

w0(k)xk =
K∑

k=m

p(k)q(k)xk (9)

F1(x) =
∞∑

k=0

w1(k)xk =
K∑

k=m

r(k)q(k)xk−1 = F ′
0(x)

〈k〉 . (10)

Following closely the derivation in [11, 29], the generating function for the distribution of the
size of component by following a randomly chosen edge is

H1(x) = 1 − F1(1) + xF1[H1(x)]. (11)

The probability distribution for the size of component to which a randomly chosen node
belongs is similarly generated H0(x), where

H0(x) = 1 − F0(1) + xF0[H1(x)]. (12)

Although it is not usually possible to find a closed-form expression for the complete
distribution of component size in a network, we can derive a closed-form expression for the
average component size 〈s〉 and the relative size of giant component S (the fraction of nodes
in the giant component) from equation (11) and equation (12) as follows,

〈s〉 = H ′
0(1) = F0(1) +

F ′
0(1)F1(1)

1 − F ′
1(1)

(13)

S = F0(1) − F0(u) (14)

where u is the smallest non-negative real solution of u = 1 − F1(1) + F1(u). Equation (13)
tells us that the phase transition at which a giant component forms takes place at F ′

1(1) = 1,
i.e.

F ′
1(1) =

∑
k k(k − 1)p(k)q(k)∑

k kp(k)
= 1. (15)

Submitting q(k) = 1 − f into equation (15), we obtain

(1 − f )

K∑
k=m

k(k − 1)p(k) =
K∑

k=m

kp(k). (16)

Using equation (16), we can obtain the critical removal fraction fc under a random failure

f random
c = 1 − 1

κ − 1
(17)

where κ = 〈k2〉/〈k〉. In particular, for scale-free networks with power law degree distributions
p(k) = (λ − 1)mλ−1k−λ (m � k � K ), with continuous approximation for p(k), we can
obtain

κ =
(

2 − λ

3 − λ

)
K3−λ − m3−λ

K2−λ − m2−λ
(18)

where K ≈ mN1/(λ−1).
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In the case α � f random
c , one must attack a fraction f � α of nodes to disintegrate the

network, and then an intentional attack with incomplete information is equivalent to a random
failure. Thus, we can obtain fc = f random

c .
In the case α > f random

c , submitting equation (2) into equation (15), we obtain

K̃∑
k=m

k(k − 1)p(k) + (1 − α)

K∑
k=K̃+1

k(k − 1)p(k) =
K∑

k=m

kp(k). (19)

Solving equation (19) for K̃ , we can obtain the critical value K̃c and then the critical removal
fraction fc can be derived from K̃(α, f ). In cases where equation (19) is not exactly solvable,
we can evaluate K̃c by numerical iteration starting from a suitable initial value. In particular, for
scale-free networks with power law degree distributions p(k) = (λ−1)mλ−1k−λ (m � k � K),
with continuous approximation for p(k), equation (19) takes the form

αK̃2−λ − 2m2−λ + (2 − α)K2−λ

2 − λ
= αK̃3−λ − m3−λ + (1 − α)K3−λ

3 − λ
(20)

where K ≈ mN1/(λ−1). In the extreme case α = 1, i.e. the intentional attack with complete
information, equation (20) is in agreement with the result in [13].

From equation (20) and equation (5), we can see that for all λ > 3 there exists a phase
transition at a finite fc < 1. However, for 2 < λ < 3 and α < 1, we can obtain K3−λ → ∞
as N → ∞ and so fc → 1 as N → ∞. In other words, for 2 < λ < 3, a giant component
exists for arbitrarily fractions of removal (f < 1) as N → ∞ if we can hide a fraction of the
node degrees. For α = 1, i.e. the intentional attack with complete information, there exists a
phase transition at a finite fc < 1 for all λ > 2. This was already argued in [13].

4. Simulation results

To validate our model and method, we perform simulations of intentional attack with
incomplete information in scale-free networks. We generate scale-free networks with
degree distributions p(k) = Ck−λ using the method described in [31]. We then attack
the network according to the model described in section 2 with different α and f . We choose
κ ≡ 〈k2〉/〈k〉 < 2 as the criterion for the disintegration of networks [12, 31]. After each node
is removed, we calculate κ . When κ becomes less than 2, we record the number of nodes t
removed up to that point. This process is performed for ten realizations with a specified degree
distribution and, for each network, for ten different realizations of the selection of EAR. The
threshold fc is defined as fc = 〈t〉/N .

To study the effect of attack information on the vulnerability of complex networks, we
plot the size of giant component S as a function of f for different α shown in figure 1. It is clear
that the attack information has an important effect on S. In the case α = 0.6, even if 35% of the
nodes are removed, there still exists a giant component containing most of nodes. However,
if we can obtain the attack information with α = 0.85, after 10% of nodes are removed, the
network is fragmented. Figure 2 shows the critical removal fraction fc from our simulations,
along with the exact solution. The agreement between the two is good. We can find that the
increase of attack information reduces the robustness of networks. In other words, we can
enhance the robustness of networks by hiding the information of networks. For example, for
the case of the Internet (λ = 2.5), if we hide 15% (α = 0.85) of nodes randomly, the critical
removal fraction fc can increase from 0.05 to 0.978. It means that it is a cost-efficient strategy
for enhancing the robustness of complex networks to hide the information of networks. In
addition, we can observe the sudden drops of the critical removal fraction at different values
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Figure 1. Size of the giant component S versus f for α = 1 (circles), α = 0.85 (diamonds),
α = 0.6 (triangles), α = 0 (squares), where N = 106, λ = 3,m = 1. The solid lines represent the
analytical results.

(a) (b)

Figure 2. (a) Critical removal fraction fc versus λ for α = 1 (circles), α = 0.85 (diamonds),
α = 0.6 (triangles), α = 0 (squares), where N = 106, m = 1. (b) Critical removal fraction fc

versus α for λ = 3.5 (circles), λ = 3 (diamonds), λ = 2.5 (squares), where N = 106,m = 1. The
solid lines represent the analytical results.

of α and λ in figure 2. It can be explained from the fact that if we cannot obtain adequate
information

(
α � f random

c

)
, the critical removal fraction under incomplete information is just

equal to the case of random failure.

5. Conclusions

We have introduced a model of intentional attack with incomplete information. The known
random failure and the intentional attack with complete information are two extreme cases
of our model. Using the generating function method, we have derived the exact value of the
critical removal fraction fc of nodes for the disintegration of networks and the size of the
giant component S. Our analytical results allow us to make predictions on the vulnerability of
complex networks under intentional attack with incomplete information.
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We have shown that the attack information parameter α has an important effect on the
critical removal fraction fc of scale-free networks. The increase of attack information can
strongly reduce the robustness of networks. Hiding just a small fraction of nodes can prevent
the network to breakdown under intentional attack to the hubs. Remarkably, for 2 < λ < 3,
a giant component exists for arbitrarily fractions of removal as N → ∞ if we can hide a
fraction of the node degrees. It is a surprising result, since random hiding a fraction of nodes
in a scale-free network should correspond to hide preferentially low-degree nodes, and then
one would expect that an intentional attack should still damage the hubs of the network. It
can be explained that for scale-free network with inhomogeneous degree distribution, there
is few highly connected hubs which dominate a networks, so even hiding few hubs, which
corresponds to hiding a small fraction of nodes randomly, can protect the whole network.
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